Bridge CST - SN4
 Extra Practice

Solving Quadratic Equations

Quadratic Equation (Quadratic Formula)

1. Recognize that it is a quadratic equation
2. Once you decide to use the Quadratic Formula, make sure it is written in general form.

$$
a x^{2}+b x+c=0
$$

1. Identify the values of a, b, and c.
2. Always write the formula
3. Carefully, substitute the values of a, b and c in formula.
4. Simplify by applying your BEDMAS rules

- Solutions are rounded to nearest hundredth.
- The following slides will provide all steps for each question..

$\# 1$	$\{-0.4,1\}$	$\# 2$	$\{-1.67,-1\}$
$\# 3$	$\{-3,0.5\}$	$\# 4$	$\{-5.42,4.42\}$
$\# 5$	$\{-2,0.5\}$	$\# 6$	$\{-3.29,-0.71\}$
$\# 7$	$\{-1,4.7\}$	$\# 8$	$\{-0.59,8.59\}$
$\# 9$	$\{-6.86,-0.15\}$	$\# 10$	$\{-0.80,1.55\}$
$\# 11$	$\{-1.17,1.92\}$	$\# 12$	$\{-2.61,2.11\}$
$\# 13$	$\{0.11,1.14\}$	$\# 14$	$\{0.21,4.79\}$
$\# 15$	$\{0.71,2\}$	$\# 16$	no solution
$\# 17$	$0.87,3.47$		
\#1			

$5 x^{2}-3 x-2=0$

$$
a=5 \quad b=-3 \quad c=-2
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(5)(-2)}}{2(5)} \\
& x=\frac{3 \pm \sqrt{9+40}}{10} \\
& x=\frac{3 \pm \sqrt{49}}{10}
\end{aligned}
$$

\#1

$$
\begin{gathered}
5 x^{2}-3 x-2=0 \\
x=\frac{3 \pm \sqrt{49}}{10}
\end{gathered}
$$

$$
x=\frac{3 \pm 7}{10}
$$

$x=\frac{3-7}{10}$
$x=\frac{3+7}{10}$
$x=\frac{-4}{10}$
$x=\frac{10}{10}$
$x=-0.4$
$x=1$

To the nearest hundredth, the solutions are
$\{-0.4,1\}$

$$
\begin{aligned}
& a=3 \quad b=8 \quad c=5 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(8) \pm \sqrt{(8)^{2}-4(3)(5)}}{2(3)} \\
& x=\frac{-8 \pm \sqrt{64-60}}{6} \\
& x=\frac{-8 \pm \sqrt{4}}{6}
\end{aligned}
$$

$3 x^{2}+8 x+5=0$

$$
\begin{aligned}
& x=\frac{-8 \pm \sqrt{4}}{6} \\
& x=\frac{-8 \pm 2}{6}
\end{aligned}
$$

$$
\begin{array}{l|l}
x=\frac{-8+2}{6} & x=\frac{-8-2}{6} \\
x=\frac{-6}{6} & x=\frac{-10}{6} \\
x=-1 & x=-1.67
\end{array}
$$

\#3

$$
\begin{aligned}
& -2 x^{2}-5 x+3=0 \\
& a=-2 \quad b=-5 \quad c=3
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(-2)(3)}}{2(-2)}
$$

$$
x=\frac{5 \pm \sqrt{25+24}}{-4}
$$

$$
x=\frac{5 \pm \sqrt{49}}{-4}
$$

Cont.

$$
\begin{gathered}
-2 x^{2}-5 x+3=0 \\
x=\frac{5 \pm \sqrt{49}}{-4}
\end{gathered}
$$

$$
x=\frac{5 \pm 7}{-4}
$$

$\left.\left.\begin{array}{l|l}\hline x=\frac{5+7}{-4} & x=\frac{5-7}{-4} \\ x=\frac{12}{-4} & x=\frac{-2}{-4} \\ x=-3\end{array} \quad \begin{array}{l}\text { To the nearest } \\ \text { hundredth, the } \\ \text { solutions are }\end{array}\right\}\{-3,0.5\}\right\}$
\#4

$$
4(x+7)=(x+2)^{2}+x
$$

$$
\begin{aligned}
& 4 x+28=(x+2)(x+2)+x \\
& 4 x+28=x^{2}+2 x+2 x+4+x \\
& 4 x+28=x^{2}+5 x+4
\end{aligned}
$$

$$
4 x-4 x+28-28=x^{2}+5 x-4 x+4-28
$$

$$
0=x^{2}+x-24
$$

\#4

$$
\begin{aligned}
& 0=x^{2}+x-24 \\
& a=1 \quad b=1 \quad c=-24 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-1 \pm \sqrt{(1)^{2}-4(1)(-24)}}{2(1)} \\
& x=\frac{-1 \pm \sqrt{1+96}}{2} \\
& x=\frac{-1 \pm \sqrt{97}}{2}
\end{aligned}
$$

Cont.
I

$$
\begin{aligned}
0 & =x^{2}+x-24 \\
x & =\frac{-1 \pm \sqrt{97}}{2} \\
x & =\frac{-1 \pm 9.8488}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-1-9.8488}{2} \\
& x=\frac{-10.8488}{2} \\
& x=-5.4244
\end{aligned}
$$

$$
x=\frac{-1+9.8488}{2}
$$

$2 x^{2}+3 x-2=0$

$$
\begin{aligned}
a & =2 \quad b=3 \quad c=-2 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x & =\frac{-3 \pm \sqrt{(3)^{2}-4(2)(-2)}}{2(2)} \\
x & =\frac{-3 \pm \sqrt{9+16}}{4} \\
x & =\frac{-3 \pm \sqrt{25}}{4}
\end{aligned}
$$

Cont.
I
\#5

$$
\begin{gathered}
2 x^{2}+3 x-2=0 \\
x=\frac{-3 \pm \sqrt{25}}{4} \\
x=\frac{-3 \pm 5}{4}
\end{gathered}
$$

$$
\begin{array}{l|l}
x=\frac{-3+5}{4} & x=\frac{-3-5}{4} \\
x=\frac{2}{4} & x=\frac{-8}{4} \\
x=0.5 & x=-2
\end{array}
$$

To the nearest
hundredth, the solutions are $\{-2,0.5\}$

FOIL

$$
\begin{aligned}
& (3 x-1)(x+5)=2(x-6) \\
& 3 x^{2}+15 x-x-5=2 x-12
\end{aligned}
$$

Simplify and change to

$$
3 x^{2}+14 x-5=2 x-12
$$ general form.

$$
3 x^{2}+14 x-2 x-5+12=2 x-2 x-12+12
$$

$3 x^{2}+14 x-2 x-5+12=2 x-2 x-12+12$

$$
3 x^{2}+12 x+7=0
$$

$3 x^{2}+12 x+7=0$
Cont.

$3 x^{2}+12 x+7=0$

$$
\begin{aligned}
& a=3 \quad b=12 \quad c=7 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(12) \pm \sqrt{(12)^{2}-4(3)(7)}}{2(3)} \\
& x=\frac{-12 \pm \sqrt{144-84}}{6} \\
& x=\frac{-12 \pm \sqrt{60}}{6} \\
& x=\frac{-12 \pm 7.75}{6}
\end{aligned}
$$

$$
\begin{gathered}
3 x^{2}+12 x+7=0 \\
x=\frac{-12 \pm \sqrt{60}}{6} \\
x=\frac{-12 \pm 7.75}{6}
\end{gathered}
$$

\#7 $(2 x-1)^{2}-3=(x+3)(x+4)$

Change to general form.

 $a x^{2}+b x+c=0$
FOIL
 FOIL

$$
(2 x-1)(2 x-1)-3=(x+3)(x+4)
$$

$$
4 x^{2}-2 x-2 x+1-3=x^{2}+4 x+3 x+12
$$

$$
4 x^{2}-4 x-2=x^{2}+7 x+12
$$

$$
4 x^{2}-x^{2}-4 x-7 x-2-12=x^{2}-x^{2}+7 x-7 x+12-12
$$

$$
3 x^{2}-11 x-14=0
$$

$$
3 x^{2}-11 x-14=0
$$

$$
\begin{aligned}
& \mathrm{a}=3 \quad \mathrm{~b}=-11 \quad \mathrm{c}=-14 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-11) \pm \sqrt{(-11)^{2}-4(3)(-14)}}{2(3)} \\
& x=\frac{11 \pm \sqrt{121+168}}{6} \\
& x=\frac{11 \pm \sqrt{289}}{6}
\end{aligned}
$$

Cont.

$$
3 x^{2}-11 x-14=0
$$

$$
\begin{aligned}
& x=\frac{11 \pm \sqrt{289}}{6} \\
& x=\frac{11 \pm 17}{6}
\end{aligned}
$$

$x=\frac{11+17}{6}$			
$x=\frac{28}{6}$	$x=\frac{11-17}{6}$		
$x=4.7$		\quad	$x=\frac{-6}{6}$
:---			
$x=-1$			

$$
\begin{aligned}
& x^{2}-8 x-5=0 \\
& a=1 \quad b=-8 \quad c=-5
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(1)(-5)}}{2(1)}
$$

$$
x=\frac{8 \pm \sqrt{64+20}}{2}
$$

$$
x=\frac{8 \pm \sqrt{84}}{2}
$$

Cont.
I

$$
\begin{gathered}
x^{2}-8 x-5=0 \\
x=\frac{8 \pm \sqrt{84}}{2} \\
x=\frac{8 \pm 9.17}{2}
\end{gathered}
$$

$$
\begin{array}{l|l}
x=\frac{8+9.17}{2} \\
x=\frac{17.17}{2} & x=\frac{8-9.17}{2} \\
x=8.59 & x=\frac{-1.17}{2} \\
x=-0.59
\end{array}
$$

\#9

$$
\begin{aligned}
& x^{2}+7 x+1=0 \\
& a=1 \quad b=7 \quad c=1
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(7) \pm \sqrt{(7)^{2}-4(1)(1)}}{2(1)} \\
& x=\frac{-7 \pm \sqrt{49-4}}{2} \\
& x=\frac{-7 \pm \sqrt{45}}{2}
\end{aligned}
$$

Cont.
I

$$
\begin{gathered}
x^{2}+7 x+1=0 \\
x=\frac{-7 \pm \sqrt{45}}{2} \\
x=\frac{-7 \pm 6.71}{2}
\end{gathered}
$$

$$
\begin{aligned}
& x=\frac{-7+6.71}{2} \\
& x=\frac{-0.29}{2} \\
& x=-0.15
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-7-6.71}{2} \\
& x=\frac{-13.71}{2}
\end{aligned}
$$

\#10

$-4 x^{2}+3 x+5=0$

$$
\begin{aligned}
& a=-4 \quad b=3 \quad c=5 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(3) \pm \sqrt{(3)^{2}-4(-4)(5)}}{2(-4)} \\
& x=\frac{-3 \pm \sqrt{9+80}}{-8} \\
& x=\frac{-3 \pm \sqrt{89}}{-8}
\end{aligned}
$$

Cont.
I

$-4 x^{2}+3 x+5=0$

$$
\begin{aligned}
& x=\frac{-3 \pm \sqrt{89}}{-8} \\
& x=\frac{-3 \pm 9.43}{-8}
\end{aligned}
$$

$$
x=\frac{-3+9.43}{-8}
$$

$$
\begin{aligned}
& x=\frac{-3-9.43}{-8} \\
& x=\frac{-12.43}{-8} \\
& x=1.55
\end{aligned}
$$

To the nearest hundredth, the

$$
x=\frac{6.43}{-8} \quad x=\frac{-12.43}{-8}
$$ solutions are

$x=-0.80$

- $\left\{\begin{array}{l}\{-0.80,1.55\} \\ \hline\end{array}\right.$

$4 x^{2}=3 x+9$

$$
\begin{aligned}
& 4 x^{2}-3 x-9=0 \\
& \mathrm{a}=4 \quad \mathrm{~b}=-3 \quad \mathrm{c}=-9 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(4)(-9)}}{2(4)} \\
& x=\frac{3 \pm \sqrt{9+144}}{8} \\
& x=\frac{3 \pm \sqrt{153}}{8}
\end{aligned}
$$

Cont.
I
\#11

$4 x^{2}=3 x+9$

$$
x=\frac{3 \pm \sqrt{153}}{8}
$$

$$
x=\frac{3 \pm 12.37}{8}
$$

$$
\begin{array}{l|l}
x=\frac{3+12.37}{8} & x=\frac{3-12.37}{8} \\
x=\frac{15.37}{8} & x=\frac{-9.37}{8} \\
x=1.92 & x=-1.17
\end{array}
$$

$2 x^{2}+6 x-x-3=4 x+8$
$2 x^{2}+5 x-3=4 x+8$
$2 x^{2}+5 x-4 x-3-8=4 x-4 x+8-8$
$2 x^{2}+x-11=0$
\#12

$$
\begin{aligned}
& 2 x^{2}+x-11=0 \\
& a=2 \quad b=1 \quad c=-11
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-(1) \pm \sqrt{(1)^{2}-4(2)(-11)}}{2(2)}
$$

$$
x=\frac{-1 \pm \sqrt{1+88}}{4}
$$

$$
x=\frac{-1 \pm \sqrt{89}}{4}
$$

Cont.

\#12

$$
\begin{aligned}
& 2 x^{2}+4 x-11 \\
& x=\frac{-1 \pm \sqrt{89}}{4} \\
& x=\frac{-1 \pm 9.43}{4}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-1+9}{4} \\
& x=\frac{8.43}{4} \\
& x=2.11
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-1-9.43}{4} \\
& x=\frac{-10.43}{4} \quad \begin{array}{l}
\text { To the nearest } \\
\text { hundredth, the } \\
\text { solutions are }
\end{array} \\
& x=-2.61
\end{aligned}
$$

\#13

$$
(3 x-1)^{2}=(x+2)^{2}-4
$$

Simplify and change to general form.
FOIL
FOIL
$9 x^{2}-3 x-3 x+1=2 x^{2}+2 x+2 x+4-4$
$9 x^{2}-6 x+1=x^{2}+4 x$
Cont.
$9 x^{2}-x^{2}-6 x-4 x+1=x^{2}-x^{2}+4 x-4 x$
$8 x^{2}-10 x+1=0$

$$
8 x^{2}-10 x+1=0
$$

$$
\begin{aligned}
& a=8 \quad b=-10 \quad c=1 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-10) \pm \sqrt{(-10)^{2}-4(8)(1)}}{2(8)} \\
& x=\frac{10 \pm \sqrt{100-32}}{16} \\
& x=\frac{10 \pm \sqrt{68}}{18}
\end{aligned}
$$

Cont.

\#13

$$
8 x^{2}-10 x+1=0
$$

$$
x=\frac{10 \pm \sqrt{68}}{16}
$$

$$
x=\frac{10 \pm 8.25}{16}
$$

$x=\frac{10+8.25}{16}$	$x=\frac{10-8.25}{16}$
$x=\frac{18.25}{16}$	$x=\frac{1.75}{16}$
$x=1.14$	$x=0.11$

To the nearest
hundredth, the
solutions are
\#14

$$
\begin{aligned}
& x^{2}-5 x+1=0 \\
& a=1 \quad b=-5 \quad \mathrm{c}=1 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(1)}}{2(1)} \\
& x=\frac{5 \pm \sqrt{25-4}}{2} \\
& x=\frac{5 \pm \sqrt{21}}{2}
\end{aligned}
$$

Cont.

\#14

$$
\begin{gathered}
x^{2}-5 x+1=0 \\
x=\frac{5 \pm \sqrt{21}}{2}
\end{gathered}
$$

$$
x=\frac{5 \pm 4.58}{2}
$$

$$
\begin{array}{l|l}
x=\frac{5+4.58}{2} & x=\frac{5-4.58}{2} \\
x=\frac{9.58}{2} & x=\frac{0.42}{2} \\
x=4.79 & x=0.21
\end{array}
$$

To the nearest
hundredth, the solutions are
\{0.21,4.79\}
\#15

$$
7 x^{2}=19 x-10
$$

$$
\begin{aligned}
& 7 x^{2}-19 x+10=0 \\
& a=7 \quad b=-19 \quad c=10 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-19) \pm \sqrt{(-19)^{2}-4(7)(10)}}{2(7)} \\
& x=\frac{19 \pm \sqrt{361-280}}{14} \\
& x=\frac{19 \pm \sqrt{81}}{14}
\end{aligned}
$$

Cont.
I
\#15

$$
7 x^{2}=19 x-10
$$

$$
x=\frac{19 \pm \sqrt{81}}{14}
$$

$$
x=\frac{19 \pm 9}{14}
$$

$x=\frac{19+9}{14}$	$x=\frac{19-9}{14}$
$x=\frac{28}{14}$	$x=\frac{10}{14}$
$x=2$	$x=0.71$

To the nearest hundredth, the solutions are $\{0.71,2\}$

$$
\begin{aligned}
& 2 x^{2}=3 x-5 \\
& 2 x^{2}-3 x+5=0 \\
& a=2 \quad b=-3 \quad c=5 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(2)(5)}}{2(2)} \\
& x=\frac{3 \pm \sqrt{9-40}}{4} \\
& x=\frac{3 \pm \sqrt{-310}}{4}
\end{aligned}
$$

\#17

$$
(2 x-3)^{2}+x(1-x)=2 x
$$

FOIL

$$
\begin{aligned}
& (2 x-3)(2 x-3)+x-x^{2}=2 x \\
& 4 x^{2}-6 x-6 x+9+x-x^{2}=2 x
\end{aligned}
$$

$$
3 x^{2}-11 x+9=2 x
$$

Simplify and change to general form.

$$
3 x^{2}-11 x-2 x+9=2 x-2 x
$$

$$
3 x^{2}-13 x+9=0
$$

$3 x^{2}-13 x+9=0$

$$
\begin{aligned}
& a=3 \quad b=-13 \quad c=9 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-13) \pm \sqrt{(-13)^{2}-4(3)(9)}}{2(3)} \\
& x=\frac{13 \pm \sqrt{169-108}}{6} \\
& x=\frac{13 \pm \sqrt{61}}{6}
\end{aligned}
$$

Cont.

\#17

$$
\begin{gathered}
3 x^{2}-13 x+9=0 \\
x=\frac{13 \pm \sqrt{61}}{6}
\end{gathered}
$$

$$
x=\frac{13 \pm 7.81}{6}
$$

$$
\begin{aligned}
& x=\frac{13+7.81}{6} \\
& x=\frac{20.81}{6} \\
& x=3.47
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{13-7.81}{6} \\
& x=\frac{5.19}{6} \\
& x=0.87
\end{aligned}
$$

To the nearest
hundredth, the solutions are
$\{0.87,3.47\}$

