

Bridge CST – SN4 Extra Practice Solving Quadratic Equations

Quadratic Equation (Quadratic Formula)

1. Recognize that it is a quadratic equation

2. Once you decide to use the Quadratic Formula, make sure it is written in general form. $ax^2+bx+c=0$

- 2. Always write the formula
- 3.Carefully, substitute the values of a, b and c in formula.
- 4. Simplify by applying your BEDMAS rules

- Solutions are rounded to nearest hundredth.
- The following slides will provide all steps for each question..

#1	$\{-0.4, 1\}$	#2	$\{-1.67, -1\}$	
#3	$\{-3, 0.5\}$	#4	$\{-5.42, 4.42\}$	
#5	$\{-2, 0.5\}$	#6	$\{-3.29, -0.71\}$	
#7	$\{-1, 4.7\}$	#8	$\{-0.59, 8.59\}$	
#9	$\{-6.86, -0.15\}$	#10	$\{-0.80, 1.55\}$	
#11	{-1.17, 1.92}	#12	$\{-2.61, 2.11\}$	
#13	$\{0.11, 1.14\}$	#14	$\{0.21, 4.79\}$	
#15	{0.71,2}	#16	no solution	
#17	$\{0.87, 3.47\}$			

 $5x^2 - 3x - 2 = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(5)(-2)}}{2(5)}$$

$$x = \frac{3 \pm \sqrt{9 + 40}}{10}$$
$$x = \frac{3 \pm \sqrt{49}}{10}$$

 $3x^2 + 8x + 5 = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(8) \pm \sqrt{(8)^2 - 4(3)(5)}}{2(3)}$$

$$x = \frac{-8 \pm \sqrt{64 - 60}}{6}$$

$$x = \frac{-8 \pm \sqrt{4}}{6}$$

 $3x^2 + 8x + 5 = 0$

$$x = \frac{-8 \pm \sqrt{4}}{6}$$
$$x = \frac{-8 \pm 2}{6}$$

$$x = \frac{-8+2}{6}$$

$$x = \frac{-6}{6}$$

$$x = -1$$

$$x = \frac{-10}{6}$$

$$x = -1.67$$

$$x = -1.67$$
To the nearest hundredth, the solutions are $\{-1.67, -1\}$

$$-2x^2 - 5x + 3 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(-2)(3)}}{2(-2)}$$

$$x = \frac{5 \pm \sqrt{25 + 24}}{-4}$$

$$x = \frac{5 \pm \sqrt{49}}{-4}$$

$$+3 - 2x^2 - 5x + 3 = 0$$

$$x = \frac{5 \pm \sqrt{49}}{-4}$$
$$x = \frac{5 \pm 7}{-4}$$

$$x = \frac{5+7}{-4}$$

$$x = \frac{12}{-4}$$

$$x = -3$$

$$x = \frac{5-7}{-4}$$

$$x = \frac{-2}{-4}$$

$$x = -3$$

$$x = -3$$

$$x = \frac{5-7}{-4}$$

$$x = \frac{-2}{-4}$$

$$x = -3$$

 $4(x+7) = (x+2)^2 + x$

$$4x + 28 = (x + 2) (x + 2) + x$$

$$4x + 28 = x^{2} + 2x + 2x + 4 + x$$

$$4x + 28 = x^{2} + 5x + 4$$

$$4x - 4x + 28 - 28 = x^{2} + 5x - 4x + 4 - 28$$
 cont.

$$0 = x^{2} + x - 24$$

$$0 = x^{2} + x - 24$$

a = 1 b = 1 c = -24

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-1 \pm \sqrt{(1)^{2} - 4(1)(-24)}}{2(1)}$$

$$x = \frac{-1 \pm \sqrt{1 + 96}}{2}$$

$$x = \frac{-1 \pm \sqrt{97}}{2}$$

2

$$0 = x^{2} + x - 24$$

$$x = \frac{-1 \pm \sqrt{97}}{2}$$

$$x = \frac{-1 \pm 9.8488}{2}$$

$$x = \frac{-1 - 9.8488}{2}$$

$$x = \frac{-10.8488}{2}$$

$$x = -5.4244$$

$$x = \frac{-1 + 9.8488}{2}$$

$$x = \frac{-1 + 9.8488}{2}$$

$$x = \frac{-1 + 9.8488}{2}$$
To the nearest hundredth, the solutions are $\{-5.42, 4.42\}$

$$2x^2 + 3x - 2 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-3 \pm \sqrt{(3)^2 - 4(2)(-2)}}{2(2)}$$

$$x = \frac{-3 \pm \sqrt{9 + 16}}{4}$$

$$x = \frac{-3 \pm \sqrt{25}}{4}$$

$$2x^{2} + 3x - 2 = 0$$

$$x = \frac{-3 \pm \sqrt{25}}{4}$$

$$x = \frac{-3 \pm 5}{4}$$

$$x = \frac{-3 + 5}{4}$$

$$x = \frac{-3 + 5}{4}$$

$$x = \frac{-3 - 5}{4}$$

$$x = \frac{-3 - 5}{4}$$

$$x = \frac{-8}{4}$$

$$x = \frac{-8}{4}$$

$$x = -2$$
To the nearest hundredth, the solutions are $\{-2, 0.5\}$

FOIL

$$(3x-1)(x+5) = 2(x-6)$$

 $3x^2 + 15x - x - 5 = 2x - 12$
 $3x^2 + 14x - 5 = 2x - 12$
 $3x^2 + 14x - 5 = 2x - 12$
 $3x^2 + 14x - 2x - 5 + 12 = 2x - 2x - 12 + 12$
 $3x^2 + 12x + 7 = 0$
Cont.

$$3x^{2} + 12x + 7 = 0$$

a = 3 b = 12 c = 7

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(12) \pm \sqrt{(12)^{2} - 4(3)(7)}}{2(3)}$$

$$x = \frac{-12 \pm \sqrt{144 - 84}}{6}$$

$$x = \frac{-12 \pm \sqrt{60}}{6}$$

$$x = \frac{-12 \pm 7.75}{6}$$

$$3x^{2} + 12x + 7 = 0$$

$$x = \frac{-12 \pm \sqrt{60}}{6}$$

$$x = \frac{-12 \pm 7.75}{6}$$

$$x = \frac{-12 + 7.75}{6}$$

$$x = \frac{-4.25}{6}$$

$$x = -19.75$$

$$x = -19.75$$

$$x = -3.29$$
To the nearest hundredth, the solutions are {-3.29}

#7
$$(2x-1)^2 - 3 = (x+3)(x+4)$$
 Change to general form.
FOIL
FOIL
 $(2x-1)(2x-1) - 3 = (x+3)(x+4)$
 $4x^2 - 2x - 2x + 1 - 3 = x^2 + 4x + 3x + 12$
 $4x^2 - 4x - 2 = x^2 + 7x + 12$
 $4x^2 - x^2 - 4x - 7x - 2 - 12 = x^2 - x^2 + 7x - 7x + 12 - 12$
 $3x^2 - 11x - 14 = 0$
Cont.

$$3x^2 - 11x - 14 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-11) \pm \sqrt{(-11)^2 - 4(3)(-14)}}{2(3)}$$

$$x = \frac{11 \pm \sqrt{121 + 168}}{6}$$

$$x = \frac{11 \pm \sqrt{289}}{6}$$

#7

$$3x^{2} - 11x - 14 = 0$$

$$x = \frac{11 \pm \sqrt{289}}{6}$$

$$x = \frac{11 \pm 17}{6}$$

$$x = \frac{11 + 17}{6}$$

$$x = \frac{28}{6}$$

$$x = 4.7$$

$$x = -1$$

$$x^2 - 8x - 5 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(-5)}}{2(1)}$$

$$x = \frac{8 \pm \sqrt{64 + 20}}{2}$$

$$x = \frac{8 \pm \sqrt{84}}{2}$$

$$x^{2} - 8x - 5 = 0$$

$$x = \frac{8 \pm \sqrt{84}}{2}$$

$$x = \frac{8 \pm 9.17}{2}$$

$$x = \frac{8 \pm 9.17}{2}$$

$$x = \frac{17.17}{2}$$

$$x = 8.59$$

$$x = -0.59$$
To the nearest hundredth, the solutions are $\{-0.59, 8.59\}$

$$x^{2} + 7x + 1 = 0$$

a = 1 b = 7 c = 1

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(7) \pm \sqrt{(7)^{2} - 4(1)(1)}}{2(1)}$$

$$x = \frac{-7 \pm \sqrt{49 - 4}}{2}$$

$$x = \frac{-7 \pm \sqrt{49 - 4}}{2}$$

#9	$x^2 + 7x + 1 = 0$		
	$x = \frac{-7 \pm \sqrt{2}}{2}$		
	$x = \frac{-7 \pm 6.71}{2}$		
	$x = \frac{-7 + 6.71}{2}$	$x = \frac{-7 - 6.71}{2}$	To the nearest
	$x = \frac{-0.29}{2}$	$x = \frac{-13.71}{2} \bullet \bullet$	solutions are $\{-6.86, -0.15\}$
	x = -0.15	x = -6.86	

#10
$$-4x^{2} + 3x + 5 = 0$$

$$a = -4 \quad b = 3 \quad c = 5$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(3) \pm \sqrt{(3)^{2} - 4(-4)(5)}}{2(-4)}$$

$$x = \frac{-3 \pm \sqrt{9 + 80}}{-8}$$

$$x = \frac{-3 \pm \sqrt{89}}{-8}$$

#10
$$-4x^{2} + 3x + 5 = 0$$

$$x = \frac{-3 \pm \sqrt{89}}{-8}$$

$$x = \frac{-3 \pm 9.43}{-8}$$

$$x = \frac{-12.43}{-8}$$

$$x = 1.55$$
To the nearest hundredth, the solutions are $\{-0.80, 1.55\}$

$4x^2 = 3x + 9$ $4x^2 - 3x - 9 = 0$	Change to general form. $ax^2 + bx + c = 0$
a = 4 b = -3 c = -9	
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
$r = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(4)(-9)}}{-(-3)^2 - 4(4)(-9)}$	
x = 2(4)	Cont.
$x = \frac{3 \pm \sqrt{9 + 144}}{8}$ $x = \frac{3 \pm \sqrt{153}}{8}$	

$$4x^{2} = 3x + 9$$

$$x = \frac{3 \pm \sqrt{153}}{8}$$

$$x = \frac{3 \pm 12.37}{8}$$

$$x = \frac{3 \pm 12.37}{8}$$

$$x = \frac{3 \pm 12.37}{8}$$

$$x = \frac{15.37}{8}$$

$$x = \frac{15.37}{8}$$

$$x = 1.92$$

$$x = -1.17$$
To the nearest hundredth, the solutions are $\{-1.17, 1.92\}$

#12
FOIL

$$(2x-1)(x+3) = 4(x+2)$$

 $2x^2 + 6x - x - 3 = 4x + 8$
 $2x^2 + 5x - 3 = 4x + 8$
 $2x^2 + 5x - 4x - 3 - 8 = 4x - 4x + 8 - 8$ cont.
 $2x^2 + x - 11 = 0$

 $2x^2 + x - 11 = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(1) \pm \sqrt{(1)^2 - 4(2)(-11)}}{2(2)}$$

$$x = \frac{-1 \pm \sqrt{1+88}}{4}$$

$$x = \frac{-1 \pm \sqrt{89}}{4}$$

 $2x^2 + 4x - 11 = 0$

$$x = \frac{-1 \pm \sqrt{89}}{4}$$

$$x = \frac{-1 \pm 9.43}{4}$$

 \mathcal{X} :

$$x = \frac{-1 + 9.43}{4}$$
$$x = \frac{8.43}{4}$$

x = 2.11

$$x = \frac{-1 - 9.43}{4}$$

$$x = \frac{-10.43}{4}$$

$$x = -2.61$$
To the nearest hundredth, the solutions are $\{-2.61, 2.11\}$

#13
$$(3x-1)^{2} = (x+2)^{2} - 4$$

FOIL FOIL

$$(3x-1)(3x-1) = (x+2)(x+2) - 4$$

$$9x^{2} - 3x - 3x + 1 = 2x^{2} + 2x + 2x + 4 - 4$$

$$9x^{2} - 6x + 1 = x^{2} + 4x$$

$$9x^{2} - x^{2} - 6x - 4x + 1 = x^{2} - x^{2} + 4x - 4x$$

$$8x^{2} - 10x + 1 = 0$$

$$8x^{2} - 10x + 1 = 0$$

$$a = 8 \quad b = -10 \quad c = 1$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(-10) \pm \sqrt{(-10)^{2} - 4(8)(1)}}{2(8)}$$

$$x = \frac{10 \pm \sqrt{100 - 32}}{16}$$

$$x = \frac{10 \pm \sqrt{68}}{18}$$

#13

$$8x^{2} - 10x + 1 = 0$$

$$x = \frac{10 \pm \sqrt{68}}{16}$$

$$x = \frac{10 \pm 8.25}{16}$$

$$x = \frac{10 + 8.25}{16}$$

$$x = \frac{18.25}{16}$$

$$x = \frac{18.25}{16}$$

$$x = \frac{1.75}{16}$$

$$x = 0.11$$
To the nearest hundredth, the solutions are {0.11, 1.14}

$$x^{2} - 5x + 1 = 0$$

$$x = \frac{5 \pm \sqrt{21}}{2}$$

$$x = \frac{5 \pm 4.58}{2}$$

$$x = \frac{0.42}{2}$$

$$x = 0.21$$
To the nearest hundredth, the solutions are $\{0.21, 4.79\}$

#15

$$7x^{2} = 19x - 10$$
Change to general form.

$$ax^{2} + bx + c = 0$$

$$a = 7 \quad b = -19 \quad c = 10$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(-19) \pm \sqrt{(-19)^{2} - 4(7)(10)}}{2(7)}$$

$$x = \frac{19 \pm \sqrt{361 - 280}}{14}$$

$$x = \frac{19 \pm \sqrt{81}}{14}$$
Cont.

$$7x^{2} = 19x - 10$$

$$x = \frac{19 \pm \sqrt{81}}{14}$$

$$x = \frac{19 \pm 9}{14}$$

$$x = \frac{19 + 9}{14}$$

$$x = \frac{19 - 9}{14}$$

$$x = \frac{19 - 9}{14}$$

$$x = \frac{19 - 9}{14}$$

$$x = \frac{10}{14}$$

$$x = \frac{10}{14}$$

$$x = 0.71$$
To the nearest hundredth, the solutions are {0.71, 2}

 $2x^2 = 3x - 5$ #16 Change to general form. $ax^2 + bx + c = 0$ $2x^2 - 3x + 5 = 0$ a = 2 b = -3 c = 5 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(5)}}{2(2)}$ TEXAS INSTRUMENTS TI-83 Plus ERR:NONREAL ANS 1:Quit 2:Goto $x = \frac{3 \pm \sqrt{9 - 40}}{40}$ There is no solution because the square root of -31 is a nonreal number. $x = \frac{3 \pm \sqrt{-31}}{}$

#17
$$(2x-3)^2 + x(1-x) = 2x$$

FOIL

$$(2x-3)(2x-3) + x - x^2 = 2x$$

 $4x^2 - 6x - 6x + 9 + x - x^2 = 2x$
 $3x^2 - 11x + 9 = 2x$
 $3x^2 - 11x - 2x + 9 = 2x - 2x$
 $3x^2 - 13x + 9 = 0$
Simplify and change to
general form.
 $ax^2 + bx + c = 0$
Cont.

 $3x^2 - 13x + 9 = 0$

$$3x^{2} - 13x + 9 = 0$$

$$x = \frac{13 \pm \sqrt{61}}{6}$$

$$x = \frac{13 \pm 7.81}{6}$$

$$x = \frac{13 + 7.81}{6}$$

$$x = \frac{13 + 7.81}{6}$$

$$x = \frac{20.81}{6}$$

$$x = \frac{20.81}{6}$$

$$x = \frac{5.19}{6}$$

$$x = 0.87$$
To the nearest hundredth, the solutions are {0.87, 3.47}